欢迎登录中国视觉网!
学术论文频道
ACADEMIC PAPERS
位置导航:首页 >> 学术论文 >> 专业论文 >> 自动光学(视觉)检测技术及其在缺陷检测中的应用综述

自动光学(视觉)检测技术及其在缺陷检测中的应用综述

发布时间:2019-09-18     来源:中国视觉网       访问次数:782


摘要:  以智能制造业表面缺陷在线自动检测为应用背景,系统地综述了自动光学(视觉)检测(以下统称自动光学检测,AOI)技术。内容涉及AOI技术的基本原理、光学成像方法、系统集成关键技术、图像处理与缺陷分类方法等。对AOI系统集成中的关键技术,如视觉照明技术、大视场高速成像技术、分布式高速图像处理技术、精密传输和定位技术和网络化控制技术等进行了概述;对表面缺陷AOI主要光学成像方法的基本光学原理、功能和应用场合进行了总结;对表面缺陷检测中的图像处理、缺陷几何特征定义、特征识别与分类算法进行了系统阐述,重点介绍了周期纹理表面缺陷图像中的纹理背景去除方法,复杂和随机纹理表面缺陷的深度学习检测、识别与分类方法。
关键词: 机器视觉; 表面缺陷;自动光学检测;视觉检测;图像处理;分类

Abstract:  The authors comprehensively review technique of automated optical (visual) inspection(AOI) technique from aspects of the basic principle, optical imaging method, key techniques of system integration, image processing and defect classification at the application background of automated online surface defect inspection in intelligent manufacturing industry. The key technologies of system integration in automated optical inspection, such as visual lighting, high speed imaging in a large field of view, distributed high-speed image processing, precision transmission and positioning for the inspected objects, and networked control, are briefly summarized. The basic optical principles, functions and applications of the optical imaging methods commonly used in automated optical defect inspection are comprehensively reviewed. The image processing, defect geometric feature definition, feature recognition and classification algorithm for surface defect inspection are systematically summarized. Particularly, the methods of texture background removal in the images with periodic textures, and the detect detection, recognition and classification methods for complex and random texture surface based on depth learning are reviewed.
Key words:  machine vision; surface defect;automated optical inspection, vision inspection; image processing; classification